Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions

نویسندگان

  • K. Miyazaki
  • H. J. Eskes
  • K. Sudo
چکیده

We have developed an advanced chemical data assimilation system to combine observations of chemical compounds from multiple satellites. NO2, O3, CO, and HNO3 measurements from the Ozone Monitoring Instrument (OMI), Tropospheric Emission Spectrometer (TES), Measurement of Pollution in the Troposphere (MOPITT), and Microwave Limb Sounder (MLS) satellite instruments are assimilated into the global chemical transport model CHASER for the years 2006–2007. The CHASER data assimilation system (CHASER-DAS), based on the local ensemble transform Kalman filter technique, simultaneously optimizes the chemical species, as well as the emissions of O3 precursors, while taking their chemical feedbacks into account. With the available datasets, an improved description of the chemical feedbacks can be obtained, especially related to the NOx-CO-OH-O3 set of chemical reactions. Comparisons against independent satellite, aircraft, and ozonesonde data show that the data assimilation results in substantial improvements for various chemical compounds. These improvements include a reduced negative tropospheric NO2 column bias (by 40–85 %), a reduced negative CO bias in the Northern Hemisphere (by 40–90 %), and a reduced positive O3 bias in the middle and upper troposphere (from 30–40 % to within 10 %). These changes are related to increased tropospheric OH concentrations by 5–15 % in the tropics and the Southern Hemisphere in July. Observing System Experiments (OSEs) have been conducted to quantify the relative importance of each data set on constraining the emissions and concentrations. The OSEs confirm that the assimilation of individual data sets results in a strong influence on both assimilated and non-assimilated species through the inter-species error correlation and the chemical coupling described by the model. The simultaneous adjustment of the emissions and concentrations is a powerful approach to correcting the tropospheric ozone budget and profile analyses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraints on surface NOx emissions by assimilating satellite observations of multiple species

[1] Surface NOx emissions are estimated by a combined assimilation of satellite observations of NO2, CO, O3, and HNO3 with a global chemical transport model. The assimilation of measurements for species other than NO2 provides additional constraints on the NOx emissions by adjusting the concentrations of the species affecting the NOx chemistry and leads to changes in the regional monthly-mean e...

متن کامل

Tropospheric chemistry in the integrated forecasting system of ECMWF

A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system in which chemical transport model (CTM) Model for OZone and ...

متن کامل

Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone

We use a global chemical transport model (GEOSChem) to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O3, CO, and relative ...

متن کامل

Global lightning NOx production estimated by an assimilation of multiple satellite data sets

The global source of lightning-produced NOx (LNOx) is estimated by assimilating observations of NO2, O3, HNO3, and CO measured by multiple satellite measurements into a chemical transport model. Included are observations from the Ozone Monitoring Instrument (OMI), Microwave Limb Sounder (MLS), Tropospheric Emission Spectrometer (TES), and Measurements of Pollution in the Troposphere (MOPITT) in...

متن کامل

Heterogeneous Chemistry and Tropospheric Ozone

Ozone is produced in the troposphere by gas-phase oxidation of hydrocarbons and CO catalyzed by hydrogen oxide radicals (HOx ≡ OH + H + peroxy radicals) and nitrogen oxide radicals (NOx ≡ NO+NO2). Heterogeneous chemistry involving reactions in aerosol particles and cloud droplets may affect O3 concentrations in a number of ways including production and loss of HOx and NOx, direct loss of O3, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012